SOME NEW RESULTS ON NON-NEGATIVE MAJORITY TOTAL DOMINATION IN GRAPHS

B. Boomadevi*1 ${ }^{*}$ Dr. V. Gopal

Assistant Professor, Professor

Department of Mathematics,
Rajeswari college of Arts and Science for women, Puducherry-605104.

Abstract

For a simple graphG $=(\mathrm{V} ; \mathrm{E})$, a two valued function $\mathrm{h}: \mathrm{V} \rightarrow\{-1,1\}$ is called a non-negative majority total dominating function if the sum of its function values over at least half the open neighborhoods is at least zero. A non-negative majority total domination number of a graph G is the minimum value of $\sum_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \mathrm{h}(\mathrm{v})$ over all non-negative majority total dominating functions f of G and it is denoted by $\gamma_{\text {maj }}^{\mathrm{nt}}(\mathrm{G})$. In this paper, we have obtained $\gamma_{\text {maj }}^{\mathrm{nt}}(G)$ of some classes of graphs.

Index Terms: Non-negative majority total domination number, majority total domination number, majority domination function, majority domination number.

I. INTRODUCTION

All graphs considered here are simple, finite and undirected graphs. For basic definition and notation we follow [1,2].

The study of domination is one of the well-studied areas within graph theory. A subset L of vertices is said to be a dominating set of G if every vertex in V either belongs to L or is adjacent to a vertex in L. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. An excellent survey of advanced topics on domination parameters are given in the book edited by Haynes et al.

For a real valued function $h: V \rightarrow R$ on V, weight of h is defined to be $w(h)=\sum_{v \in V} h(v)$. Further, for a subset S of V we let $h(S)=\sum_{v \in S} h(v)$. Therefore $w(h)=h(V)$.

A two valued function $h: V \rightarrow\{-1,1\}$ is called a signed majority dominating function if the sum of its function values over at least half the closed neighbourhoods is at least one. A non-negative majority total domination number of a graph G is the minimum value of $\sum_{v \in V(G)} f(v)$ over all non-negative majority total dominating functions f of G and it is denoted by $\gamma_{m a j}^{n t}(G)$. Broere et al. introduced Majority domination in [3] and this concept is further studied in [4]. Later, Hua-ming xing et al. [5] introduced and studied the following concept. A function $h: V \rightarrow\{-1,1\}$ is called a signed majority total dominating function if $h(N(v)) \geq 1$ for at least half of the vertices in graph G. The signed majority total domination number of G, is denoted by $\gamma_{m a j}^{t}(G)$, and is defined as
$\gamma_{m a j}^{t}(G)=\{w(h) \mid h$ is a signed majority total dominatingfunction of $G\}$.

In 2017, Sahul Hamid and S. Anandha Prabhavathy [6] introduced non-negative majority total domination of a graph G which is defined as follows: a two valued function $h: V \rightarrow\{-1,1\}$ is called a non-negative majority total dominating function if the sum of its function values over at least half the open neighbourhoods is at least zero. A non-negative majority total domination number of a graph G
is the minimum value of $\sum_{v \in V(G)} h(v)$ over all non-negative majority total dominating functions f of G and it is denoted by $\gamma_{m a j}^{n t}(G)$, see Figure 1. So for exact values of $\gamma_{m a j}^{n t}(G)$ are known only for complete graph, complete bipartite graph, path, cycle and star.

Before we get into results, we define some notation which we have used throughout the paper. If h is a minimum non-negative majority total dominating function, then

- $V_{+}=\{v \in V(G): h(v)=+1\} ;$
- $V_{-}=\{v \in V(G): h(v)=-1\}$; and
- $N_{h}=\{v \in V(G): N(h(v)) \geq 0\}$.

Figure 1: The graph G with $\gamma_{m a j}^{n t}(G)=-2$.

II. NON-NEGATIVE MAJORITY TOTAL DOMINATION NUMBER OF COMPLETE GRAPH MINUS A PERFECT MATCHING.

Theorem 1 Let $G=K_{2 a}-M$, where M is a perfect matching in a complete graph $K_{2 a}$. Then $\gamma_{m a j}^{n t}(G)=-2$.

Proof: Let $V\left(K_{2 a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$. Consider a perfect matching of $K_{2 a}$ is $M=$ $\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{2 a-1} v_{2 a}\right\}$.

Define a function $h: V \rightarrow\{-1,1\}$ by

$$
h\left(v_{i}\right)=\left\{\begin{array}{l}
+1 \text { if } 1 \leq i \leq a+1 \\
-1 \text { otherwise }
\end{array}\right.
$$

It is easy to verify that $h(N(v)) \geq 0$ for at least half of the vertices in G. Further, $w(h)=-2$.
Thus we have $\gamma_{m a j}^{n t}(G) \leq-2$.

Figure 2: The Graph $K_{6}-M$ with $\gamma_{m a j}^{n t}(G)=-2$.

Let h be a non-negative majority total dominating function of G. Then $\left|V_{+}\right|+\left|V_{-}\right|=2 a$ and $\left|V_{+}\right|-$ $\left|V_{-}\right|=h(V)$. Consider a vertex $v_{2 i-1}, 1 \leq i \leq a$, of G with $N\left(v_{2 i-1}\right) \geq 0$. Since G is $2 a-2$ regular,

$$
\begin{array}{r}
h(V)=h\left(N\left(v_{2 i-1}\right)\right)+h\left(v_{2 i-1}\right)+h\left(v_{2 i}\right) \geq 0-1-1=-2 . \\
\text { That is, }\left|V_{+}\right|-\left|V_{-}\right| \geq-2 .
\end{array}
$$

It follows that $\left|V_{+}\right| \geq a-1$ and $\left|V_{-}\right| \geq a+1$ and hence we have

$$
\gamma_{m a j}^{n t}(G) \geq-2
$$

Thus we have $\gamma_{m a j}^{n t}(G)=-2$. Hence the theorem.

III. NON NEGATIVE MAJORITY DOMINATION NUMBER OF PATH AND CYCLE RELATED GRAPHS

We start this section with definitions.

Definition 1 An m-fan, denoted by F_{m} and $V\left(F_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$, is the graph that contains the path $P_{m}=v_{1}, v_{2}, \ldots, v_{m}$ and the vertex v_{0} is adjacent to all vertices of P_{m}.

Definition 2 An m - wheel, denoted by W_{m} and $V\left(W_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$, is the graph that contains the cycle $C_{m}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ and the vertex v_{0} is adjacent to all vertices of P_{m}.

Definition 3 The (m, n) - tadpole graph, denoted by $T_{m, n}, m \geq 3$ and $n \geq 1$, is the graph obtained by joining a cycle $C_{m}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ and a path $P_{n}=u_{1}, u_{2}, \ldots, u_{n}$ by a bridge $v_{m} u_{1}$.

Definition 4 The m - sunlet, $m \geq 3$, is the graph on $2 m$ vertices obtained by attaching m pendant edges to a cycle C_{m}. We denote it by S_{m}.

We make use of the following theorem which is proved in [6].

Theorem 2 For $m \geq 3, \gamma_{m a j}^{n t}\left(C_{m}\right)=\gamma_{m a j}^{n t}\left(P_{m}\right)=2\left\lceil\frac{m}{4}\right\rceil-m$.
Theorem 3[5] For $\geq 3, \gamma_{m a j}^{n}\left(P_{m}\right)=\left\{\begin{array}{c}-1 \text { if } m \text { is an odd integer } \\ 0 \text { if } m \text { is an even integer }\end{array}\right.$.
Theorem 4[5] For $m \geq 3$,
$\gamma_{m a j}^{n}\left(C_{m}\right)=\left\{\begin{array}{l}3 \text { if } m \text { is an odd integer } \\ 0 \text { if } m \text { is an even integer } .\end{array}\right.$

Theorem 4 For $m \geq 3, \gamma_{m a j}^{n t}\left(F_{m}\right)=\gamma_{m a j}^{n t}\left(P_{m}\right)+1$.
Proof: $\operatorname{Let} V\left(F_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$. Define a function $h: V \rightarrow\{-1,1\}$ by

$$
h\left(v_{i}\right)=\left\{\begin{array}{l}
+1 \text { if } 0 \leq i \leq\left\lceil\frac{m}{2}\right\rceil+\left\lceil\frac{m}{4}\right\rceil \text { and } i \equiv 2(\bmod 3) \\
-1 \text { otherwise }
\end{array}\right.
$$

One can easily verify that $h(N(v)) \geq 0$ for at least half of the vertices with weight $w(h)=2\left\lceil\frac{\mathrm{~m}}{4}\right\rceil+$ $1-m=\gamma_{m a j}^{n t}\left(P_{m}\right)+1$.

Hence $\gamma_{m a j}^{n t}\left(F_{m}\right) \leq \gamma_{m a j}^{n t}\left(P_{m}\right)+1$.

Figure 3: The graph F_{7} with $\gamma_{m a j}^{n t}\left(F_{7}\right)=-2$.
To prove reverse inequality, let h be a non-negative majority total dominating function of F_{m}. Then $\left|V_{+}\right|+\left|V_{-}\right|=m+1$ and $\left|V_{+}\right|-\left|V_{-}\right|=h(V)$.

Case 1: $v_{0} \in N_{h}$.
Since $v_{0} \in N_{h}$ and degree of v_{0} is $m,\left|V_{+}\right| \geq\left\lceil\frac{m}{2}\right\rceil$ and $\left|V_{-}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$
Hence $\gamma_{m a j}^{n t}\left(F_{m}\right) \geq\left|V_{+}\right|-\left|V_{-}\right|-1$

$$
=\left\lceil\frac{m}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor-1
$$

As $\left\lceil\frac{m}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor-1 \geq 2\left\lceil\frac{m}{4}\right\rceil+1-m$,

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+1 .----(1)
$$

Case 2: $v_{0} \notin N_{h}$.
It is clear that either $v_{0}=-1$ or $v_{0}=1$.
Let $v_{0}=1$. Since h is the minimum non-negative total dominating function of F_{m} and $v_{0}=1$,

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+1
$$

By Theorem 2, we have

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+1=2\left\lceil\frac{m}{4}\right\rceil+1-m .----(2)
$$

Let $v_{0}=-1$ and $H=F_{m}-v_{0} \cong P_{m}$. Because of the choice of v_{0}, a vertex $v \in N_{h}$ if and only if the sum of the weight of the $N(v)$ of H must be at least one. Consequently,

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n}\left(P_{m}\right)+1
$$

By Theorem 3, it is clear that

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n}\left(P_{m}\right)+1 \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+1 .----(3)
$$

From (1), (2) and (3), we have $\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+1$.

$$
\text { Thus } \gamma_{m a j}^{n t}\left(F_{m}\right)=\gamma_{m a j}^{n t}\left(P_{m}\right)+1
$$

Theorem 5 For $m \geq 4, \gamma_{m a j}^{n t}\left(W_{m}\right)=\gamma_{m a j}^{n t}\left(P_{m}\right)+2$.
Proof: Let $V\left(F_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$. Define a function $h: V \rightarrow\{-1,1\}$ by

$$
h\left(v_{i}\right)=\left\{\begin{array}{l}
+1 \text { if } i=1 \text { and } 0 \leq i \leq\left\lceil\frac{m}{2}\right\rceil+\left\lceil\frac{m}{4}\right\rceil \text { and } i \equiv 2(\bmod 3) \\
-1 \text { otherwise }
\end{array}\right.
$$

Clearly, $h(N(v)) \geq 0$ for at least half of the vertices with weight $w(h)=2\left\lceil\frac{m}{4}\right\rceil+2-m=$ $\gamma_{m a j}^{n t}\left(P_{m}\right)+2$.

$$
\text { Hence } \gamma_{m a j}^{n t}\left(W_{m}\right) \leq \gamma_{m a j}^{n t}\left(P_{m}\right)+2
$$

Figure 4: The graph $\gamma_{m a j}^{n t}\left(W_{7}\right) \leq 0$.

To prove equality, let h be a non-negative majority total dominating function of F_{m}. Then $\left|V_{+}\right|+$ $\left|V_{-}\right|=m+1$ and $\left|V_{+}\right|-\left|V_{-}\right|=h(V)$.

Case 1: $v_{0} \in N_{h}$.
Since $v_{0} \in N_{h}$ and degree of v_{0} is $m,\left|V_{+}\right| \geq\left\lceil\frac{m}{2}\right\rceil$ and $\left|V_{-}\right| \leq\left\lfloor\frac{m}{2}\right\rfloor$
Hence $\gamma_{m a j}^{n t}\left(W_{m}\right) \geq\left|V_{+}\right|-\left|V_{-}\right|-1$

$$
=\left\lceil\frac{m}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor-1
$$

As $\left\lceil\frac{m}{2}\right\rceil-\left\lfloor\frac{m}{2}\right\rfloor-1 \geq 2\left\lceil\frac{m}{4}\right\rceil+1-m$,

$$
\gamma_{m a j}^{n t}\left(W_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+2 .--- \text { (1) }
$$

Case 2: $v_{0} \notin N_{h}$.
It is clear that either $v_{0}=-1$ or $v_{0}=1$.
Let $v_{0}=1$. Since h is the minimum non-negative total dominating function of W_{m} and $v_{0}=1$,

$$
\gamma_{m a j}^{n t}\left(W_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+2
$$

By Theorem 2, we have

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+1=2\left\lceil\frac{m}{4}\right\rceil+2-m .----(2)
$$

Let $v_{0}=-1$ and $H=W_{m}-v_{0} \cong C_{m}$. Because of the choice of v_{0}, a vertex $v \in N_{h}$ if and only if the sum of the weight of the $N(v)$ of H must be at least one. Consequently,

$$
\gamma_{m a j}^{n t}\left(W_{m}\right) \geq \gamma_{m a j}^{n}\left(C_{m}\right)+1
$$

By Theorem 4, it is clear that

$$
\gamma_{m a j}^{n t}\left(F_{m}\right) \geq \gamma_{m a j}^{n}\left(C_{m}\right)+1 \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+2 .----(3)
$$

From (1), (2) and (3), we have $\gamma_{\text {maj }}^{n t}\left(W_{m}\right) \geq \gamma_{m a j}^{n t}\left(P_{m}\right)+2$.

$$
\text { Thus } \gamma_{m a j}^{n t}\left(W_{m}\right)=\gamma_{m a j}^{n t}\left(P_{m}\right)+2 .
$$

Theorem 6 For $m \geq 3$ and $n \geq 2$,

$$
\gamma_{m a j}^{n t}\left(T_{m, n}\right)=\gamma_{m a j}^{n t}\left(C_{m}\right)+\gamma_{m a j}^{n t}\left(P_{n}\right) .
$$

Proof: Let $V\left(C_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $e=v_{1} u_{1}$ be the bridge joining C_{m} and P_{n}. Then $V\left(T_{m, n}\right)=V\left(C_{m}\right) \cup V\left(P_{n}\right)$.

Define a function $h: V \rightarrow\{-1,1\}$ by

$$
\begin{gathered}
h\left(v_{i}\right)=\left\{\begin{array}{l}
+1 \text { if } 0 \leq i \leq\left\lceil\frac{m}{2}\right\rceil+\left\lceil\frac{m}{4}\right\rceil \text { and } i \equiv 2(\bmod 3) \text { and } \\
-1 \text { otherwise }
\end{array}\right. \\
h\left(u_{i}\right)=\left\{\begin{array}{l}
+1 \text { if } 0 \leq i \leq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{4}\right\rceil \text { and } i \equiv 2(\bmod 3) \\
-1 \text { otherwise }
\end{array}\right.
\end{gathered}
$$

It is not difficult to check that $h(N(v)) \geq 0$ for at least half of the vertices with weight

$$
w(h)=2\left(\left\lceil\frac{m}{4}\right\rceil+\left\lceil\frac{n}{4}\right\rceil\right)-(m+n)=\gamma_{m a j}^{n t}\left(C_{m}\right)+\gamma_{m a j}^{n t}\left(P_{n}\right) .
$$

$$
\text { Hence } \gamma_{m a j}^{n t}\left(T_{m, n}\right) \leq \gamma_{m a j}^{n t}\left(C_{m}\right)+\gamma_{m a j}^{n t}\left(P_{n}\right) .
$$

Figure 5: The graph $T_{6,5}$ with $\gamma_{\text {maj }}^{n t}\left(T_{6,5}\right)=-7$
On the other hand, let h be a non-negative majority total dominating function of $T_{m, n}$. Let $G=T_{m, n}-$ $e=C_{m} \cup P_{n}$. By Theorem 2, we have $\gamma_{m a j}^{n t}\left(T_{m, n}\right) \geq \gamma_{m a j}^{n t}\left(C_{m}\right)+\gamma_{m a j}^{n t}\left(P_{n}\right)$. Hence $\gamma_{m a j}^{n t}\left(T_{m, n}\right)=$ $\gamma_{m a j}^{n t}\left(C_{m}\right)+\gamma_{m a j}^{n t}\left(P_{n}\right)$.

We make use of the following theorem which is proved in [].
Theorem 7 If G has m vertices, then

$$
\gamma_{m a j}^{n t}(G) \geq\left\{\begin{array}{c}
\frac{\delta m-2 \Delta m}{\delta+\Delta} \text { if } m \text { is even } \\
\frac{\delta m+\Delta(1-2 m)}{\delta+\Delta} \text { if } m \text { is odd }
\end{array}\right.
$$

Theorem 8 For $m \geq 3, \gamma_{m a j}^{n t}\left(S_{m}\right)=\left\lceil\frac{m}{2}\right\rceil-2 m$.
Proof: Let $V\left(S_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$, where degree of $u_{i}=1$.
Define a function $h: V \rightarrow\{-1,1\}$ by

$$
\begin{gathered}
h\left(v_{i}\right)=\left\{\begin{array}{l}
+1 \text { if } i \equiv 1(\bmod 2) \\
-1 \text { otherwise }
\end{array}\right. \text { and } \\
h\left(u_{i}\right)=-1 \text { for all } i .
\end{gathered}
$$

From the above function, it guarantee that at least half the vertices of S_{m} has $h(N(v)) \geq 0$.
Hence, we have $\gamma_{m a j}^{n t}\left(S_{m}\right) \leq\left\lceil\frac{m}{2}\right]-2 m .----(1)$

Figure 6: The graph S_{6} with $\gamma_{\text {maj }}^{n t}\left(S_{6}\right)=-6$
For equality, let h be a non-negative majority total dominating function of S_{m}.
Let $N_{h}=U \cup V$, where U contains the vertex of degree one.
Clearly, $\delta=3, \Delta=3$ and $\left|V\left(S_{m}\right)\right|=2 m$.
By Theorem 7 we have

$$
\gamma_{m a j}^{n t}\left(S_{m}\right) \geq\left\{\begin{array}{l}
-m \text { if } m \text { is even } \\
\frac{1-2 m}{2} \text { if } m \text { is odd }
\end{array}---(2)\right.
$$

From (1) and (2), we have

$$
\gamma_{m a j}^{n t}\left(S_{m}\right)=\left\lceil\frac{m}{2}\right\rceil-2 m .
$$

IV. REFERENCES

[1] Chartrand,G. and Lesniak.2005. Graphs and Digraphs, Fourth edition, CRC press, Boca Raton.
[2] Haynes, T,W. Hedetniemi, S,T. and Slater,P,T. 1998. Domination in Graphs: Advanced Topics, Marcel Dekker, New York .
[3] Izak Broere. Johannes, H. Hattingh. Michael, A. Henning. Alice, A.1995. McRae, Majority domination in graphs, Discrete Mathematics, 38:125-135.
[4] Holm,T,S.2001. On majority domination in graph, Discrete Mathematics, 239: 1-12.
[5] Hua-ming xing. Langfang. Liang sun. Beijing. Xue-gang chen and Taian.2005. On signed majority total domination in graphs, Czechoslovak Mathematical Journal, 55(130): 341-348.
[6] Sahul Hamid,I. Anandha Prabhavathy, S. 2017.Non-negative Majority Total Domination In Graphs, Palestine Journal of Mathematics, 6(2):611-616.

